Quiz 93.9 and 4.1
(1) Find the most general antiderivative of the function given. What notation would be used for this antiderivative (ie. $\left.f(x), f^{\prime}(x), F(x) \ldots\right)$?. (Tip: you can check you answer by differentiation =))
a) $\quad f(x)=4 x^{3}+2 \sin x$
b) $g^{\prime}(x)=5 \sqrt{x}-7 x^{2 / 3}=5 x^{1 / 2}-7 x^{2 / 3}$

$$
F(x)=x^{4}-2 \cos x+C
$$

$$
g(x)=\frac{10}{3} x^{3 / 2}-\frac{21}{5} x^{5 / 3}+c
$$

2) Using the graph, estimate the area under the graph of $\mathrm{f}(\mathrm{x})$ over $[0,3]$ using 6 rectangles with sample points being left endpoints. Draw rectangles.

$$
\Delta x=\frac{b-a}{n}=\frac{3-0}{6}=\frac{1}{2}
$$

$$
i f(0) \Delta x+f\left(\frac{1}{2}\right) \Delta x+f(1) \Delta x+f\left(\frac{3}{2}\right) \Delta x+f(2) \Delta x+f\left(\frac{5}{2}\right) \Delta x
$$

$$
\left(f(0)+f\left(\frac{1}{2}\right)-f(1)+f\left(\frac{3}{2}\right)+f(2) 1-f\left(\frac{5}{2}\right)\right) \Delta x
$$

$$
\tilde{\pi}(0+1+2+4+6+8) \frac{1}{2}
$$

$$
\frac{21}{2}
$$

3) Using the graph, estimate the area under the graph of $f(x)$ over [0,3] using 3 rectangles with sample points being midpoints. Draw rectangles.

$$
\begin{gathered}
\Delta x=\frac{b-9}{n}=\frac{3-0}{3}=1 \\
f(1 / 2) \Delta x+f\left(\frac{3}{2}\right) \Delta x+f\left(\frac{5}{2}\right) \Delta x \\
(1+4 \vdash 9)(1)
\end{gathered}
$$

